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ABSTRACT 

Accurate diagnosis of structural health is a vital step in protecting structures. Whether 

caused by acute events, such as earthquakes or other natural disasters, or long-term degradation 

from environment and human use (and abuse), structural damage can threaten both human life 

and economic loss. An autonomous monitoring system that has the capability of predicting the 

location of damage would have a positive economic impact, not to mention the potential for 

saving lives by giving quick assessments of structural health and whether immediate evacuation 

of, or re-routing, around a structure is necessary. The process of monitoring structural health and 

identifying damage severity and location is generally termed structural health monitoring 

(SHM). The core of this project is to investigate how variable stiffness and damping devices 

(VSDD) can be most effectively used to identify local damage in bridge and building structures. 

Using one or more VSDDs to modify the response, simulated damage is detected, localized, and 

quantified. One fundamental goal is to determine the best VSDD actions — whether adding 

damping or stiffness — to precisely and robustly locate and identify bridge damage. This study is 

based on simulation of bridge motion and other structures due to ambient excitation sources. 

Several VSDD behaviors, such as variable stiffness mode and variable damping mode, are 

studied in the context of a frequency domain analysis. These analyses are performed on simple 

models of bridge and building dynamics, e.g., two degree-of-freedom (2DOF) shear model 

systems and a six degree-of-freedom (6DOF) model. Structural behavior is assumed locally 

linear before damage and after damage. Generally, VSDDs were successful in improving the 

damage identification in structures using the variable stiffness mode but rather unsuccessful in 

the variable damping only mode. In addition to demonstrating the potential of using variable 

stiffness and damping devices to improve structural health monitoring, this study also provides 

some insights into further avenues of future research to build on the improvements studied 

herein. 

 

Keywords: structural health monitoring, variable stiffness and damping devices, parametric 

frequency-domain identification, damage detection, structural control. 
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1.0 INTRODUCTION 

Accurate diagnosis of structural health is a vital step in protecting structures. Whether 

caused by acute events, such as earthquakes or other natural disasters, or long- term degradation 

from environmental effects and human use (and abuse), structural damage can threaten both 

danger to human life and economic loss. The process of monitoring structural health and 

identifying damage existence, severity and location is generally termed structural health 

monitoring (SHM). Chang (1999) defined structural health monitoring to be an “autonomous 

[system] for the continuous monitoring, inspection, and damage detection of [a structure] with 

minimum labor involvement.”  

Structural health monitoring has long been recognized as its own particular category 

within system identification whose area is well established. High fidelity modeling and accurate 

response estimation are required for SHM for several reasons, foremost being the monitoring of 

structural characteristics and response to predict the onset of failure or the expected remaining 

life, and for the purposes of controlling the motion of the structure.  

By determining the model that best fits data taken from the structure, certain structural 

characteristics may be identified. With identification at different points in time — periodic or 

shortly after natural disasters — changes in these characteristics may be monitored. With damage 

models, changes in structural characteristics are used to predict damage severity and location.  

This report proposes using smart, controllable passive devices such as Variable Stiffness 

and Damping devices (VSDDs) in structures to improve SHM, and demonstrates the benefits 

over conventional passive structures. 

1.1 SHM Benefits 

Clear needs for structural health monitoring exist for both building and bridge structures. 

For example, significant expenditures after the 1994 Northridge earthquake went to inspecting 

joints of steel buildings for damage. These joints are often hidden within a structure, such as 

behind walls or encased in concrete (for example, see Figs. 1–3), and require removal of non-

structural material, not to mention putting (at least part of) the structure out of service during 

inspection. Similar expenditures were required after the 1995 Hyogo-Ken Nanbu (Kobe) 

earthquake as well (Mita, 1999). A recent report to the U.S. Congress by the Federal Highway 

Administration (FHWA, 2002) indicates that approximately 25% of the bridges in the U.S. are 

rated as deficient. It is estimated that it will require an investment of 7 billion dollars per year for 

the next two decades to rebuild or replace the bridge infrastructure in the U.S. (Patten et al., 

1999). This all when many public budgets are in the billions of dollars in the red (EBBT, 2002). 

All of these facts make clear the essential need for effective structural health monitoring systems. 

1.2 Difficulties of Conventional SHM Approaches 

One approach to SHM is based on global vibration methods. In applying these methods, 

many global vibration SHM studies assume a class of mathematical models that may represent 

the actual structure. When considering damage detection, these studies have focused on 

identifying changes in of modal parameters, such as natural frequencies, mode shapes, and modal 

damping ratios, obtained from measured vibration response. Recent state-of-the-art surveys of 

global vibration SHM techniques applied to civil engineering applications are given by Doebling 

et al. (1996, 1998). 
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Figure 1. Beam-column connection damage 
(Kiremedjian, 1999) 

 

Figure 2. Plastic hinging at top 
of column (Hall, 1995) 

 

Figure 3. Cracks through column flange and extending into web (Hall, 1995) 

Unfortunately, no global technique has been well established and accepted as an overall 

successful approach (Sanayei et al., 1998). Some explanatory reasons are that (i)models cannot 

perfectly predict the full behavior of real structures, (ii)periodic environmental effects such as 

thermally-induced variations may mask the effects of damage on global vibration characteristics, 

(iii)measurement noise can cause significant variation from one test to the next, (iv)excitation is 

limited to ambient sources for most civil structures, and (v)sensitivity of global vibration 

characteristics to damage may be small. These can all lead to variations in the identified model 

parameters characteristics that are not due to true changes in the structure, raising uncertainty in 

damage estimates (Vanik et al., 2000). 

Using forced structural response strategies can overcome some of the aforementioned 

problems. For example, forced response interrogation can be timed to minimize periodic 

environmental effects from one test to the next, and may provide greater excitation energy to 

decrease signal-to-noise ratios in comparison with ambient excitation. For structures with 

embedded active vibration control systems, the actuators can be used to enhance damage 

detection by tuning the actuation signals to directly increase closed-loop damage sensitivity of 

global vibration characteristics (Ray and Tian, 1999).  
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In spite of the advantages of using forced response, large actuation devices are not being 

used in a continuous manner for civil structures (except a few isolated cases in Asia) due to the 

large power requirements, concerns about stability and so forth, rendering them impractical for 

damage mitigation or SHM of civil structures. Further, building and bridge owners typically 

prefer their structures not to be shaken deliberately, both for comfort of occupants or users of the 

structures and to lessen any chance of risking further damage. 

Given these limitations, one is restricted to analyzing response to ambient excitation to 

perform SHM. Ambient excitation on bridge structures takes a number of forms including wind, 

traffic, waves and microtremors. The ambient excitation approach has several advantages over 

approaches using forced vibration response. For example, for the low amplitude excitations 

typically experienced during ambient vibration, most structural systems are well characterized 

with linear models. In addition, continuous ambient vibration tests can be performed at a very 

low cost. However, while applications of ambient excitation identification techniques are more 

acceptable than active control ones, the sensitivity of the measured signals to noise is a pressing 

question. Due to small structural response under such ambient excitations, the signal-to-noise 

ratios are small enough to make SHM difficult and results uncertain. Thus, solutions to these 

SHM difficulties must be sought elsewhere. 

1.3 Use VSDDs to Improve SHM 

One approach that may help alleviate some of the SHM difficulties for civil structures 

would be to use “smart” variable stiffness and damping devices (VSDDs) — controllable passive 

devices that have received significant study for vibration mitigation (Spencer and Sain, 1997; 

Symans and Constantinou, 1999) — in a synergistic manner to provide internal parametric 

changes to affect sensitivity to damage. VSDDs are already being used to improve the 

performance of structures subjected to natural hazards by mitigating vibration response. In 

addition to providing near optimal structural control strategies for vibration mitigation, these 

low-power and fail-safe devices can also provide parametric changes to increase global vibration 

measurement sensitivity for health monitoring. Further, the integration of smart damping and 

health monitoring can exploit, in a synergistic manner, the common aspects of both technologies 

as seen in the flowcharts in Fig. 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. SHM and variable stiffness/damping flow charts 
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VSDDs can adjust the behavior of a structure by real-time modification of stiffness and 

damping at discrete points within the structure. By commanding different behavior for each 

VSDD in a structure, multiple structural configurations can be tested, each of which can be 

designed to increase the sensitivity to damage in different portions of the structure (see Fig. 5). 

For example, consider a structure with four stiffness devices with “on” and “off” settings; there 

are 24, or 16, distinct configurations, each of which can provide some information about the 

structural characteristics. The SHM is provided, then, with multiple signatures of the structure, 

each of which can provide additional and, if done efficiently, mostly complementary 

information. As an analogy to the previous discussion, consider taking a sequence of 

photographs of the front of a house. If the camera is exactly in front of the house for each 

picture, relatively little depth information can be gathered. However, shifting the camera (or 

changing the lighting) can give computer modeling software significantly new complementary 

information. 

 

Figure 5. Mutual benefits of SHM and VSDDs 

1.4 Overview of this VSDD/SHM Research Project 

This report proposes using VSDDs in structures to improve SHM, and demonstrates the 

benefits in contrast with conventional passive structures. Several structures are studied herein, 

with one or more VSDDs installed. First 2DOF and then 6DOF shear structural models are 

studied, each in several configurations: the 2DOF structure with a VSDD in (i)the first story, 

(ii)the second story, and (iii)both stories, and the 6DOF building with VSDDs in the first three 

stories. Then, a 2DOF bridge structure model (Erkus et al., 2002) is studied with a VSDD 

attached in the bearing layer between the pier and the deck. In each case, the VSDD is chosen to 

act as an ideal variable stiffness/damping device, with one of several discrete stiffness/damping 

values. Some examples from simulation are used to demonstrate the benefits of the proposed 

method. 

The focus herein is introducing a better approach for estimating the structural dynamic 

parameters through the use of variable stiffness and damping devices. Since controllable 

stiffness/damping devices are used to give the parametric changes necessary for improved 

monitoring, the bridge models must be control-oriented dynamic models — i.e., low-order 

models that still capture most of the salient dynamic characteristics of a real bridge, particularly 

in the locations of the controllable devices and in the frequency ranges driven by the excitation. 

These devices are located in the structures in the form of lateral bracing or, in the bridge 

example, in the isolation layer between the bridge deck and the pier supports. It is assumed that 

transfer functions from ground acceleration to absolute horizontal accelerations of the different 

degrees-of-freedom have been determined experimentally through standard procedures with the 

VSDDs at various stiffness or damping settings. Herein, these transfer functions are modeled by 

the exact transfer functions plus the Fourier transform of a Gaussian pulse process that would be 

typical of band-limited Gaussian white sensor noise vector processes. A conventional least-

squares approach is adopted to estimate structural parameters. Because of the VSDDs’ useful 
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properties, they were able to improve the sensitivity of the identification. It is shown that using 

variable stiffness devices in a structure subjected to repetitive ambient vibration simulation, 

favorable results are obtained compared to other approaches. 

While the VSDD approach can be used with other identification methods, it is here 

investigated in the context of a parametric frequency domain identification to determine 

structural parameters. Historically, frequency-domain approaches have dominated modal testing 

literature for many years. In the vast majority of modal testing, frequency response functions are 

measured prior to using a modal identification algorithm (Juang, 1994). Experienced modal 

testing personnel can deduce considerable information by examining frequency response 

functions. 

In this report, conventional parametric identification in the frequency domain is 

described. The direct transfer function polynomial identification is rather complex in the 

unknown parameters. Consequently, one simplification discussed in the literature is explained. 

However, it is shown that this simplification can often lead to significant bias in parameter 

estimates due to unwanted magnification of sensor noise effects. The numerical examples herein 

use a fairly noisy signal to challenge the methods. An iterative method is proposed that 

approximates the more direct method. These methods are then applied to conventional structural 

identification, assuming no VSDD within the structure, and then with VSDDs using several 

distinct stiffness settings and (later) distinct damping settings.  

It is shown that using the least squares approach on the modified version of the error in 

transfer functions with known starting guesses, both using VSDD and conventional identification 

techniques give parameter estimates. The latter gives similar mean estimates but the VSDDs 

approach gives rather smaller variation. For biased starting guesses, the VSDDs approach gives 

more accurate estimate means than the conventional approach though with slightly larger 

variation. 

The choice of VSDD location(s), possibly key to efficient algorithms, is also important. 

Though it seems beneficial to include these devices in all stories, cost benefit analysis (of SHM 

as well as hazard vibration mitigation) may indicate that using fewer devices is more 

economical. Accordingly, in the 6DOF model studied herein, one VSDD is assumed in each of 

the first three structural segments only. The results show again the effectiveness of adding these 

devices in improving the mean estimates of the structural parameters and their variations, even 

with a quite noisy measurement signal. 

In summary, this report documents a study that demonstrates the potential of improving 

SHM by exploiting the controllable properties of variable stiffness and damping devices. Further, 

the study raised additional questions and insights that should be investigated in future research. 

These conclusions and future directions comprise the last chapter of the report. 
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2.0 LITERATURE REVIEW 

The field of structural health monitoring has been quite rich with research in the last few 

decades. The impact and benefits, both economic and societal, of SHM have drawn the interest 

of many researchers. The results of relevant work in the literature can be loosely broken down 

into several related categories; some representative examples in each category are briefly 

highlighted in this chapter. First, an overview of SHM approaches is given, followed by a 

discussion of modeling issues. Then several classes of system identification methods are 

described. Finally, variable stiffness and damping devices are reviewed, highlighting the various 

types and some applications in which they have been studied.  

2.1 Research on Structural Health Monitoring 

Conventional research in SHM and damage detection for civil structures can be roughly 

classified into local and global methods. Local SHM methods detect changes in a structure in 

localized regions using, for example, ultrasound, x-ray, piezoelectric devices and so forth. 

Unfortunately, local SHM methods have limited range; e.g., piezoelectric devices have an 

effective range on the order of 30 cm (Wang and Chang, 1999). For large civil structures, this 

would require a staggering number of devices to monitor the entire structure. Furthermore, other 

local methods usually require significant human involvement or are limited to areas where 

damage might be expected to occur. Consequently, service costs and errors in expected damage 

locations limit the usefulness of such methods.  

Conventional global vibration SHM methods (Doebling et al., 1996, 1998) typically 

focus on identifying changes in modal parameters (e.g., natural frequencies, mode shapes, and 

modal damping ratios) computed from measured vibration response. With identification at 

different points in time — periodic or shortly after natural disasters — changes in these 

characteristics may be monitored. However, these approaches also have their difficulties. Global 

methods based on ambient excitation are easy to implement as they require no additional 

excitation source, but simply may not reveal certain defects since some damage mechanisms are 

only strongly observable with narrowband excitation that ambient sources alone cannot provide. 

Using known excitation with force actuators can overcome this difficulty but, with a few 

exceptions in Asia, such active devices are not used in civil structures for other purposes so 

widespread permanent installation and use is unlikely. As a result, no global technique has been 

well established and accepted as an overall successful approach (Sanayei et al., 1998). 

A benchmark study in structural health monitoring based on simulated structural response 

data was developed by the joint IASC-ASCE task group on structural health monitoring. This 

benchmark was created to facilitate a comparison of various methods employed for the health 

monitoring of structures. The focus of the problem is simulated acceleration response data from 

an analytical model of an existing physical structure. This problem was addressed and studied by 

various researchers including Au et al. (2000), Bernal and Gunes (2000), Caicedo et al. (2003), 

Corbin et al. (2000), Johnson et al. (2003), Katafygiotis et al. (2000) and Luş and Betti (2000). 

This SHM benchmark problem, both the definition and the application of a number of SHM 

methods to solve the problem, will be published a special issue of the Journal of Engineering 

Mechanics later in 2003. 

SHM approaches, particularly ones based on global vibration, often involve some level of 

structural modeling and some type of system identification.  The modeling, which is described in 
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more detail in the following section, whether discrete or continuous in nature, has the difficulty 

that no model has the exact same dynamic properties as the structure it is intended to represent. 

Fortunately, the small motion levels typical of ambient vibration response can alleviate some of 

these issues. In addition to various modeling approaches, there are numerous system 

identification techniques, some of which are described in the third section of this chapter. 

2.2 Modelling of Structures for SHM 

Picking the right model to represent a particular structure has been a critical issue in the 

application of SHM. Capecchi and Vestroni (1999) state that, from a theoretical point of view, it 

is convenient to distinguish between continuous and discrete structures. Although all structures 

are in fact continuous, structures in which concentrated masses are dominant are considered 

discrete in dynamic analysis. In the context of damage identification, structures are considered as 

discrete if the damage cannot affect a portion smaller than the element. Thus frames, for 

example, are seen as discrete structures whereas bridge decks and pipelines are usually 

considered continuous. For continuous structures, it is conceptually correct to pose the problem 

of localizing of a crack, because its position affects the entire dynamics. For a discrete structure 

the problem is different; for example, it is not possible to precisely determine where, in an 

element, a crack exists because the structure is modeled discretely, with all characteristics of the 

element taken as a whole.  

Despite extensive research in modeling, structural models cannot be expected to perfectly 

predict the full behavior of the structure. For example, the model may not account for effects 

such as thermally-induced daily variations and amplitude dependence of modal parameters. 

Further, the available measured information is restricted by limits on the amount of 

instrumentation. Nonlinearities are also a major obstacle where the model becomes very difficult 

to implement and each nonlinear system is a special case of its own. Moreover, while finite 

element modeling is convenient, it often produces a dynamic model that neither is of modest 

order nor accurately captures the dynamics of the built structure.  Some reasons for the latter are 

mismodelling of structural elements, differences between actual and modeled material properties 

and dimensions, approximation in finite element derivations, and poor convergence of the 

numerical model (Juang, 1994).  For SHM, models of extremely high order are of limited utility 

as, often, only a small number of the lower modes of a structure can be identified with 

confidence (Beck et al., 2001).  Additionally, a real structure often has nonlinearities and higher 

frequency modes (or local vibration modes) that may be missed in the analytical modeling, 

leading to what is generally termed “model error.” All of these difficulties make clear the 

complexity of the modeling problem. 

Using ambient vibration to excite structures may simplify the modeling problem 

necessary for SHM. Basically, the model can be considered linear in that case (see, e.g., Beck et 

al., 2001). This assumption is based upon the facts that ambient excitations are small, and that 

civil structures are highly rigid, making them behave linearly under small external excitations. 

Linear behavior, as well as safety considerations, have encouraged numerous researchers to 

adopt ambient excitation approaches in SHM. 

2.3 System Identification for SHM 

As there is no unique and general mathematical definition for damage, researchers tend to 

relate damage to changes in structural model parameters (such as stiffness, damping, and masses) 
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or sometimes modal parameters (such as natural frequencies and mode shapes). This may be 

done by assigning damage indices that are functions of the structural parameters or by evaluating 

the damage as the reduction in one or more of these parameters. Accordingly, identifying these 

parameters, whether modal or model parameters, is crucial for SHM application. Unfortunately, 

these parameters cannot be easily or directly mathematically derived from structural response but 

rather require extensive measurements and signal processing that are generally termed system 

identification techniques. System identification is the process of developing or improving a 

mathematical representation of a physical system using experimental data (Juang, 1994). 

Thereafter, this model is used to estimate the properties of the dynamic system such as stiffness, 

damping, frequencies, etc., through computational techniques that use the known input/output 

data. 

System Identification (SI) techniques to study the actual states of civil engineering 

structures have received considerable attention in recent years, as extensive full-scale 

experimental studies are expensive and often difficult to perform. Identification techniques are 

divided intofrequency domain and time domain methods. Some of the key approaches among 

these techniques are discussed in the next two sections, followed by brief summaries of 

ERA/subspace approaches and some research in the literature focused specifically on structural 

model parameter identification (both of which can be studied in the frequency or time domains). 

2.3.1 Frequency Domain Techniques  

Frequency-domain identification (parametric/non-parametric) techniques in control 

engineering and system identification gained relevance with stability and design methods based 

on frequency response measurements (Juang, 1994). This approach began with the technique 

known as transfer function (TF) analysis. Many frequency dependent methods, such as the 

empirical transfer-function estimate (ETFE), bootstrap methods, separable least squares methods, 

etc., are detailed by Ljung (1999). 

One of the first methods that used the frequency domain data in the identification of the 

transfer function (TF) of the system was attributed to the efforts by Levy (1959). Levy’s method, 

for a single-input-single-output (SISO) system was based upon expressing the TF in the form of 

frequency-dependent numerator )( jA  and denominator )( jB  polynomials as 

)(/)()(  jAjBjH   where  is any frequency within the frequency range of interest in the 

specific problem. The experimental TF )(ˆ jH  is obtained from input/output measured data for 

the studied system. Thereafter, Levy (1959) considered the difference between the experimental 

and theoretical TFs as the error )(ˆ)(/)()(  jHjAjBje  . The error formula was 

modified to a simpler form )(ˆ)()()(ˆ  jHjAjBje  . Finally, by differentiating the norm 

of the simplified error evaluated at known frequencies with respect to the unknown coefficients 

of the polynomials )( jB  and )( jA , a number of equations (equivalent to the number of the 

unknown coefficients), are obtained. By solving these equations, the coefficients of )( jB  and 

)( jA  are obtained.  

2.3.2 Time Domain Techniques 

Time domain methods as well became quite popular later in the last century especially 

with the great advance in the computer systems industry (Juang, 1994). Many time domain 

identification techniques are explained thoroughly in Ljung (1999). Some examples of time 

domain identification techniques are ARX, ARMA, ARMAX, ERA, recursive least squares, etc. 

Also, Beck et al. (1994a) presented a methodology for determination of modal characteristics of 

structures from its measured ambient vibrations at several instrumented locations, an extension 
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of the MODE-ID algorithm that uses a Bayesian probability framework to build a linear model 

based on a classical normal modes approach (Beck, 1978; Beck, 1990). 

2.3.3 ERA and Subspace Identification Techniques 

One example of non-parametric time-domain methods is given by Juang and Pappa 

(1985), which proposed a method called the Eigensystem Realization Algorithm (ERA) for 

modal identification from measured responses. This method uses a singular-value decomposition 

to derive the basic formulation for a minimum-order realization, which is an extended version of 

the Ho-Kalman algorithm (Ho and Kalman, 1965). First, a block Hankel matrix is obtained by 

arranging the pulse response data into the blocks of the Hankel matrix. By examining the 

singular values of the Hankel matrix, the order of the system is determined. A minimum-order 

realization (A, B, and C state-space matrices) is constructed using a shifted block Hankel matrix. 

By finding the eigensolution of the realized state matrix, modal damping rates and frequencies 

may be obtained. The method then evaluates coherence and co-linearity accuracy parameters to 

separate system modes from noise modes. Based on these accuracy parameters, the system 

model is determined and the Hankel matrix based on identified state space matrices is 

reconstructed and compared with the measurement data.  

Some modifications were later considered to improve the ERA method. Juang et al. 

(1988) introduced a modification to ERA algorithm, using response data correlations (ERA/DC) 

rather than the pulse response values in the formulation of the Hankel matrix. The ERA/DC 

modified method was found to reduce measurement noise bias without model over-specification. 

However, when over-specification is permitted and singular value decomposition is used to 

obtain a minimum order realization, both old and modified methods give equally good results for 

the data used.  

Other subspace techniques have also been were also introduced and studied. Quek et al. 

(1999) introduced the Eigen-space Structural Identification technique for tall buildings subjected 

to stationary ambient excitations and based on the forward innovation model of the Kalman filter 

sequence. The method used QR decomposition and Quotient Singular Value Decomposition 

(QSVD) techniques, which are substituted into a least-square formulation to obtain a non-unique 

solution. Luş et al. (1999) presented an algorithm, based on the ERA and Observer/Kalman filter 

Identification (OKID) approaches, that uses earthquake-induced ground accelerations and 

structural vibrations as input/output data sets for identification purposes.  

2.3.4 Structural Model Parameter Identification 

Having accurate and updated information about the condition of structures, that may 

suffer hazardous shaking or loading, is crucial. This would save many lives as well as a lot of 

money. Accordingly, identifying the structural model parameters such as stiffness and damping 

is done to predict the behavior of structures under expected future loadings. Significant research 

effort, therefore, has been directed to find methods to identify these parameters. Some methods, 

such as that by Takewaki et al. (2000), have studied the stiffness-damping simultaneous 

identification of building structures using limited earthquake records with higher intensity level. 

Other research has been based on probabilistic methods related to Bayesian theory, such as 

Vanik et al. (2000) and Katafygiotis and Yuen (2001).  

The focus of model parameter identification to achieve SHM is usually on local loss of 

stiffness as a proxy for local damage (Capecchi and Vestroni, 1999; Caicedo et al., 2001; 

Elmasry and Johnson, 2002; Beck et al., 1994b, 2001). To achieve that, some research has 

sought to identify relationships between change in the modal characteristics and changes in 
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structural properties such as mass, stiffness, and damping. For example Bayesian methodologies 

have been used for identifying the loss of structural stiffness, such as in Beck et al. (1994b, 

2001). Bayes’ theorem is invoked to develop a probability density function (PDF) for the model 

stiffness parameters conditioned on modal data and the chosen class of models. The latter 

method estimates the natural frequencies, damping ratios, and mode shape components of a 

linear model with classical normal modes that best fits the measured data in a least squares sense. 

Then the parameters of the structural model are determined from the computed modal data. The 

critical assumption is that the change in the structural model implies changes in the parts of the 

real structure. As a first step, changes in the values of the modal parameters are identified and 

then as a second step the corresponding loss of stiffness within the structure is identified. 

In other previous research work focusing on identifying these model parameters, ambient 

vibration, such as ambient wind measurements, is used for excitation. Béliveau and Chater 

(1984) outlined a procedure to estimate parameters based on relatively simple ambient wind 

measurements of story accelerations reduced to resonant frequencies, and corresponding mode 

shapes. Also, several other research studies have considered ambient vibration for identification 

of stiffness parameters and, in turn, stiffness loss, such as Beck et al. (1994, 2001), and Caicedo 

et al. (2001). Ray and Tian (1999) introduced a method intended for smart structures embodying 

self-actuation and self-sensing capabilities. The method enhances modal frequency sensitivity to 

damage using feedback control. 

2.4 Variable Stiffness/Damping Devices 

“Smart” variable stiffness/damping devices (VSDDs), such as semiactive dampers and 

controllable stiffness devices, are controllable passive devices that potentially offer the reliability 

of passive devices, yet maintain the versatility and adaptability of fully active systems (Dyke et 

al., 1996). These devices have received significant study for mitigating various types of natural 

hazards for many types of civil structures (Spencer and Sain, 1997; Symans and Constantinou, 

1999), and are useful for improving SHM. 

2.4.1 Passive, Active and Semiactive Devices 

Control devices for civil structures can be divided into four classes passive, active, 

semiactive and hybrid. Passive devices, generally, are those that have fixed properties and 

require no energy to function. In contrast, the controllable forces generated by active devices are 

induced directly by energy (electrical or otherwise) put into the device. Between passive and 

active are semiactive devices that are passive devices with properties that are controllable by 

application of a small amount of energy. Hybrid devices are combinations of the other three 

classes. Each of these is discussed briefly in the following paragraphs, with greater detail on 

semiactive devices. 

Passive devices, such as visco-elastic dampers, viscous fluid dampers, friction dampers, 

metallic dampers, tuned mass dampers, and tuned liquid dampers can partially absorb structural 

vibration energy and reduce response of the structure (Soong and Dargush, 1997). These passive 

devices are relatively simple and easily replaced. However, the effectiveness of passive devices 

is always limited due to the narrow frequency ranges in which they tend to be effective, the 

dependence of their force only on local information, and their inability to be modified if goals (or 

design codes) change.  

Active control devices, including active mass dampers and active tendon systems, can 

reduce structural response more effectively than passive devices because feedback and/or feed-
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forward control systems are used (Housner et al., 1997).  However, large power requirements 

during strong earthquakes and other hazards hamper their implementation in practice. Further, 

active devices have the ability to inject dynamic energy into the structural system; if done 

improperly, this energy has the potential to cause further damage to the structure. In particular, 

this can occur when the assumptions used to design the control algorithm are incorrect or do not 

have a proper characterization of the structural dynamics. 

In contrast, “smart” devices are controllable passive devices that require small amounts 

of power to control certain passive behavior. Moreover, these devices cannot add energy to the 

structural/mechanical system; rather, they may only (temporarily) store and dissipate energy. 

Furthermore, they offer highly reliable operation at a modest cost and can be viewed as fail-safe 

in that they default to passive devices should the control hardware malfunction (Dyke et al., 

1996). 

2.4.2 Types of Semiactive Devices 

Different types of semiactive devices have been developed recently. One type of is the 

semiactive damper, such as variable-orifice dampers, controllable fluid dampers, and 

controllable friction devices. Variable-orifice dampers use an electromechanical variable orifice 

to alter the resistance to flow in a conventional hydraulic fluid. Controllable fluid dampers are 

passive hydraulic dampers containing a fluid, such as magnetorheological (MR) or 

electrorheological (ER) fluid, with controllable yield stress (Spencer et al., 1997). Another type 

of semiactive device is a semiactive stiffness device such those developed by Kobori and 

Takahashi (1993), Patten et al. (1999) and Yang et al. (1996). They are on-off hydraulic devices 

capable of providing mainly variable damping and limited variable stiffness capability. 

Nagrarajaiah and Ma (1996) introduced a variable stiffness device that consists of four sets of 

spring elements and telescoping tube elements. Varying the position of the springs with a 

servomotor produces the continuously-variable stiffness. 

Controllable fluid dampers use fluids with properties that can be modified by some 

outside influence. MR or ER fluids change their properties in the presence of a magnetic or 

electric field, respectively. These fluids were originally developed in the 1940s (Rabinow, 1948; 

Winslow, 1949), but few applications were foreseen at that time.  While ER fluids showed early 

promise for civil applications (see, e.g., Ehrgott and Masri, 1992), most of the attention of the 

civil structural control community has shifted to using MR fluids due to their insensitivity to 

impurities, relatively constant behavior over a wide range of operating temperatures, and the low 

voltage required to activate them (Spencer et al., 1997). MR dampers typically consist of a 

hydraulic cylinder containing micron-sized magnetically polarizable particles suspended within a 

fluid. In the presence of magnetic field, the particles polarize and form particle chains that resist 

fluid flow. By varying the magnetic field, the mechanical behavior of an MR damper can be 

modulated. Since MR fluids can be changed from a viscous fluid to a yielding semisolid within 

milliseconds and the resulting damping force can be considerably large with a low-power 

requirement, MR dampers are applicable to large civil engineering structures. 

2.4.3 Applications of Semiactive Control to Civil Structures 

The idea of incorporating variable stiffness/damping devices in civil structures is not 

new. These devices have been extensively researched for base isolation of structures and other 

structural control applications, particularly in the last decade. Some researchers have investigated 

MR dampers for control of seismic response such as Dyke et al. (1996), Spencer et al. (1997, 

1998) and Yang et al. (2002). ER dampers were studied for seismic response control by Ehrgott 
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and Masri (1992), Gavin et al. (1996a,b), Makris et al. (1996), and others. Dyke et al. (1996) 

proposed a clipped-optimal force control algorithm with acceleration feedback and obtained 

excellent results when this algorithm was applied to control a seismically excited three story 

scaled building model. Ribakov and Gluck (1999) investigated the effectiveness of ER dampers 

in mitigating seismic response of frame structures. They used an optimal linear passive control 

strategy to determine the viscous constant of the ER damper and then use active control strategy 

to determine control forces. Through numerical simulation they found that ER dampers could 

reduce the peak displacement response of a seven-story frame structure up to 65 per cent without 

increases in base shear forces and accelerations. In Xu et al. (2000), the force-displacement 

relationship of an MR damper or an ER damper, based on a parallel-plate model, is first extended 

to include the stiffness of chevron brace supporting the smart damper. An extensive parameter 

study is performed in terms of the maximum yield shear stress and the Newtonian viscosity of 

the fluid, the brace stiffness, and the earthquake intensity. VSDDs are also studied for damping 

of stay cables in suspended bridges. Johnson et al. (2003) investigated the potential of improving 

the damping to these cables through the use of semiactive damping devices. The response of the 

cables with a semiactive damper is found to be reduced dramatically compared to the optimal 

passive linear viscous damper for typical damper configurations, thus demonstrating the efficacy 

of a semiactive damper for absorbing cable-vibratory damage. Varadarajan and Nagrarajaiah 

(2000) introduce the use of semiactive variable stiffness tuned mass damper to control the 

response of tall buildings excited by wind. The results from the latter paper indicate that using 

the semiactive variable stiffness tuned mass damper is able to reduce the response similar to 

using an active tuned mass damper. 

2.4.4 Experimental and Full Scale Studies Using Semiactive Devices 

Since theoretical VSDD research has shown significant promise, researchers have 

progressed to experimental work to apply semiactive control in real world applications. Symans 

and Constantinou (1997) describe shaking table tests of a multi-story scale-model building 

structure subjected to seismic excitation and controlled by a semiactive fluid damper control 

system. The semiactive dampers were installed in the lateral bracing of the structure and the 

mechanical properties of the dampers were modified according to control algorithms that utilized 

the measured response of the structure. 

Patten et al. (1999) reported the first successful full scale demonstration of semiactive 

control technology, installing an Intelligent Stiffener for Bridges (ISB) on an in-service bridge on 

interstate I-35. The ISB consists of an otherwise generic stiffener, retrofitted to a bridge, that is 

equipped with an adjustable hydraulic link used to regulate the amount of stiffness (and 

damping) provided by the stiffener as vehicles pass over the bridge. The ISB acts much like a 

muscle, sometimes flexing, and other times remaining relaxed. A 12-volt automobile battery 

energizes it. The performance of the installed ISB system was assessed via experimental results 

(see Fig. 6). The results indicate that the ISB system can add decades of service life to an 

existing bridge. 
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The Kajima Corporation has developed a semiactive 

hydraulic damper (SHD) and installed it in an actual building 

(Kurata et al., 2000). This was the first application of a 

semiactive seismic building control system that continuously 

changes the device damping coefficient. A forced vibration test 

was carried out by an exciter with a maximum force of 100 kN 

to investigate the building vibration characteristics and to 

determine the control system performance. As a result, the 

primary resonance frequency and the damping ratio of a 

building (without semiactive hydraulic dampers) decreased as 

the exciting force increased due to the influence of non-linear 

members such as plain concrete curtain walls. After the eight 

semiactive hydraulic dampers were installed in the building, the 

control system performance was identified by a response 

control test for steady-state vibration. The elements that 

composed the semiactive damper system demonstrated the 

specified performance and the whole system operated 

successfully, considerably reducing the displacements at the 

roof of the structure. 

To prove the scalability of MR fluid technology to 

devices of size appropriate for civil engineering applications, 

Yang et al. (2002) study a MR fluid damper with a nominal 

maximum damping force of 200 kN (20 tons). For design 

purposes, two quasi-static models, an axisymmetric and a 

parallel-plate model, are derived for the force-velocity 

relationship of the MR damper, and both models give results 

that match closely match the experimental data. 

 
 

 

Figure 6. ISB vibration 
absorber on I-35 bridge 

(Patten et al., 1999) 
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3.0 PROJECT OBJECTIVE AND SUMMARY 

The core of this research project has been to investigate whether and how variable 

stiffness and damping devices can be effectively used to identify local damage in bridge 

structures. A complete and conclusive answer to this question is beyond the scope of a one-year 

project, but it guides the direction of the ongoing research. This study is based on simulation of 

bridge motion due to ambient excitation. Using one or more variable stiffness and damping 

devices (VSDDs) to modify the response, structural parameters are estimated. The critical 

assumption is that the change in the structural model implies changes in the parts of the real 

structure. The focus is usually on local loss of stiffness as a proxy for local damage. The damage 

in this study is evaluated in terms of the loss of stiffness within a structural model, found by 

comparing the structural model parameters before and after damage occurrence given some 

input/output data. 

One fundamental goal is to determine the best VSDD actions — whether adding damping 

or stiffness — to precisely and robustly locate and identify bridge damage. Several VSDD 

behaviors, such as variable stiffness mode and variable damping mode are considered. To reflect 

the generality of the approach of using VSDDs in SHM, this study includes bridge and building 

structures as well. Bridge and shear building model behaviors are assumed locally linear before 

damage and after damage. Some simple models of bridge dynamics are given herein to be used 

in simulation. The system models necessary for this study are control-oriented dynamic models 

— i.e., low-order models that still capture the salient dynamic characteristics of a real bridge (or 

frame structure), particularly in the locations of the controllable devices and sensors, and across 

the frequency ranges driven by the excitation. 

After the development of control-oriented models, the next step involves incorporating 

models of variable stiffness and damping devices into the dynamic bridge model and/or shear 

building model systems. Ideal stiffness devices with multiple discrete stiffness settings are used. 

A least-squares identification method of the related transfer functions is used to identify 

structural characteristics such as stiffness and damping or their ratios to the corresponding 

masses. The responses are simulated for the combined bridge/VSDD dynamic model and shear 

building models. By using the various permutations of stiffness device settings, multiple 

signatures are obtained that help better identify the structural parameters. Then, controllable 

damping devices are tested whether they can provide better information about structural model 

properties.  

The method used herein to identify the structure model parameters is based on a least-

squares error convergence technique. The error is expressed as the difference between the 

measured transfer functions (from the external excitation to the measured responses) and their 

corresponding polynomial parametric forms. In order to obtain the required structural 

parameters, the relationships between the structural model parameters and the polynomial 

coefficients are obtained. The problem is modeled as a single-input multi-output system (SIMO). 

One simplification that is discussed in the literature (Levy, 1959) is used to overcome the 

complexity of the direct transfer function polynomial identification. However, this 

simplification, denoted the “Least Squares Numerator Method,” is hsown to lead to significant 

bias in parameter estimates due to unwanted effects of sensor noise. Consequently, an iterative 

method is proposed that approximates the more direct exact method. The proposed method is 

called the “Iterative Least-Squares Numerator Method.” These methods are then applied to 
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conventional frequency domain structural identification, assuming no VSDD, and with one or 

more VSDDs with several distinct stiffness settings. 

It is shown that, using the parametric frequency-domain least-squares approach with the 

proposed modified transfer function error and a known starting guess, the VSDD approach gives 

mean parameter estimate similar to that with a conventional structure but with rather smaller 

error (i.e., smaller variance). 
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4.0 PARAMETRIC FREQUENCY DOMAIN IDENTIFICATION 
WITH VSDDS 

4.1 Least-Squares Numerator Method (LSN) 

One method of identifying parameters of a dynamical system is by representing transfer 

functions (TFs) in the frequency domain as ratios of polynomials. The transfer functions 

generally are defined by the ratio between the output and input signals. For example, consider a 

linear structural model of the form: 

 ƒbKxxCxM  
d ,  vdxCxCy  ƒ

21  (1) 

where M, K, and Cd are the mass, stiffness and damping matrices of the system, and C1, C2, and 

d are the output influence matrices for the displacement, velocity and the external force f. For 

simplicity of the method developed herein, the input force is assumed to be a single scalar force. 

Similarly, one can write the model in state-space form 

 ƒBqAq
~~

 ,       vDCqy  ƒ  (2) 

where  TTT
xxq   is the state vector, A

~
is the system state matrix which is dependent on the 

mass, damping, and stiffness matrices, B
~

 is the input influence matrix, C is the output influence 

matrix for the state vector q, and D is the direct transmission matrix. In both equations, f is an 

excitation force, and y is an 1m  vector of measured responses corrupted by 1m  sensor noise 

vector v.  

Thus, the system can be represented by the 1m  transfer function matrix H(j). Each 

element of H(j) can be expressed as the ratio of numerator and denominator polynomials at a 

certain frequency with coefficients depending on matrices in Eqs. (1) or (2). It is important to 

state that for many structural systems, the denominator polynomial is the same for all transfer 

functions from the same input. Therefore, identifying the denominator polynomial is crucial in 

defining the system dynamics. The transfer function vector from a single input to the outputs can 

consequently be written in polynomial ratio form as: 

 )(/)()(  jAjj BH   (3) 

where B(j) and A(j) are the numerator and denominator polynomials, which may be expanded 
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where the b’s and a’s are real coefficients. 

Assuming that the transfer function has been determined experimentally through standard 

procedures from measured input and output data (Bendat and Piersol, 2000), the experimental 

transfer function matrix, expressed as 

 )(ˆ
ijH ,  i=1, 2, …, n (4) 

is known at various discrete frequency points. Therefore, the difference between the estimated 

theoretical transfer function H(j) and the actual experimental one )(ˆ jH  represent the error 

equation which is then used in the identification process of the parameters. 

Parametric frequency-domain methods to match such theoretical and measured transfer 

functions date back to the work of Levy (1959) who parameterized a continuous-time TF by the 

coefficients of numerator and denominator polynomials. One approach to this problem is to 
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follow Levy’s procedure in determining the polynomial coefficients and then, as a subsequent 

step, estimate structural parameters such as mass, stiffness and damping coefficients. The latter 

could be through an intermediate step of first identifying modal characteristics such as modal 

frequency, damping ratio and mode shapes. In this study, however, the parameterization method 

is chosen to be through the structural parameters directly without calculating the coefficients of 

the polynomials as an intermediate step. 

For a structure with one or more variable stiffness and/or damping devices, the properties 

of which are determined through a local control system, some of the coefficients in the transfer 

function polynomials may be adjusted through changing the VSDD control algorithms. Thus, it 

is convenient to introduce notation to explicitly state that the transfer function polynomials are 

functions of unknown structural parameters, denoted by the 1n  vector θ , which is to be 

estimated, and of known controllable structural parameters, denoted by the vector κ . The 

transfer function expression is thus modified to be: 

 ),,(/),,()( κθκθBH  jAjj   (5) 

For a given structural model, the A and B polynomials are specific known functions of their 

parameters. Substituting the measured TF in place of the exact TF leaves a residual error e that 

may be defined by  
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A conventional least-squares approach may be adopted to solve this problem, forming a global 

square error 

  
i

ii jj ),,(),,()( *2
κθeκθeθ   (7) 

where (·)* denotes complex conjugate transpose. The optimal choice of the unknown parameters 

is found by minimizing the square error — i.e., take the derivatives of the square error Eq. (7) 

with respect to the elements of unknown vector θ , set them equal to zero, and solve the resulting 

(generally nonlinear) equations. However, if there are known controllable structural parameters 

in a structure with multiple configurations — which is the case when using VSDDs, for example 

— the square error equation can be augmented by using several combinations of known 

controllable structural parameters 

  
k i

kiki jωjω ),,(),,()( *2
κθeκθeθΔ  (8) 

where the symbol kκ  denotes multiple distinct sets of parametric changes to the structure. The 

error is, then, minimized simultaneously for all configurations. 

Because the residual error e in Eq. (6) is a ratio of polynomials, the square error in Eq. (8) 

is an extremely complex function of the unknown parameters θ . One simplification, which has 

been suggested and used in various studies in the literature, is to recognize that the denominator 

of Eq. (6) is nonzero for systems with damping, so minimizing the error in the numerator may 

prove sufficient (e.g., Levy, 1959). In other words, minimize the sum of the squares of: 

 ),(ˆ),,(),,(),,(~
kiikiki jωjωAjωj κHκθκθBκθe   (9) 

which is, herein, denoted the least-squares numerator (LSN) method. 



 18 

4.2 Iterative-Least Squares Numerator Method (ILSN) 

It may be shown that the alternate error measure in the LSN method, while simpler to 

solve, can be susceptible to strong bias from sensor noise in frequency ranges where 

),,( κθijωA is large (i.e., often the case where H(j) is small). To avoid this bias, and to avoid 

the difficulty in solving the least-squares problem for the standard error measure e, an iterative 

method, described as follows, is adopted here using an approximation to the denominator in 

Eq. (6). 

Assume that iteration l begins with a starting approximation 1
ˆ

lθ  to the unknown 

parameter vector θ ; then, the denominator of Eq. (6) is estimated based on the vector 1
ˆ

lθ  of 

estimated parameters and is no longer a function of these unknowns, but only in the frequency 

and the multiple distinct sets of parametric changes to the structure 

 ),ˆ,(ˆ),(ˆ
1  κθκ  liil jωAjωA  (10) 

and the error is, thus, formed as 
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and the squared error takes the form: 

  
k i

ilill jωjω ),,(ˆ),,(ˆ)(
*2

 κθeκθeθΔ  (12) 

Minimizing the sum of the square error in Eq. (12) will result in an updated estimate lθ̂  

to the unknown parameter vector θ . The iterations continue until the relative differences 

between 1
ˆ

lθ  elements and the corresponding elements of lθ̂  are all below some threshold. 

(Absolute or relative norms of the difference could also be used.) A maximum number of 

iterations may also be set to stop the algorithm in the case that the iterative method does not 

converge (though this termination criterion was not required in this study as convergence always 

occurred within a limited number of iterations). 

Whichever method is used to estimate the unknown parameter vector θ , the use of 

multiple structural configurations, denoted by the different values of known parameters kκ , 

provided by VSDDs in a structure, can generate more accurate estimates of θ  than can be found 

with a comparable amount of data in a conventional structure with a fixed κ . This is 

demonstrated for some examples in the following section. 

4.3 Illustrative Examples 

The least-squares identification with VSDDs may be applied to various types of 

structures. In this study, both building and bridge models are considered. 

4.3.1 Two Degree-of-Freedom Shear Building Model 

Consider the two degree-of-freedom (2DOF) shear building structure model shown in 

Fig. 7. The structure is subject to ambient excitation from the ground. Absolute accelerations 

measurements at the ground, gx , and of the two floors, )( g1 xx    and )( g2 xx   , are used to 

generate a 12  experimental transfer function at n distinct frequency values. (Note that xi 

herein denotes the displacement of the ith floor relative to the ground.) Let the unknown 

parameter vector be given by: 
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A VSDD that can provide a number of distinct 

stiffness levels is located in the first story of the 

structure. The VSDD is installed in the lateral bracing 

of the structure and the mechanical properties of the 

dampers are modified according to control algorithms, 

which utilize the measured response of the structure. 

The device is considered ideal and semiactive; i.e., it 

can generate the desired forces with no delay and with 

no actuator dynamics (Ramallo et al., 2000). Therefore 

the known controllable vector is related to the stiffness 

of a variable stiffness device 

 1/ mkVSDD κ  (14) 

or to the damping coefficient of a variable damping 

device 

 1/ mcVSDD κ  (15) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. 2DOF shear building model 

Then, the theoretical transfer function can be written in the polynomial form as: 
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Note that the denominator polynomial ),,( θjωA  is the same for all transfer functions from the 

same input. The numerator and denominator polynomials can be expressed as: 

    A(s, , ) = s4 + [3+4+45]s
3 + [1+2+25+34+]s2 + [14+23+4]s + [12+2] 

   B1(s, , ) = [3]s
3 + [1+34+]s2 + [14+23+4]s + [12+2] (17) 

   B2(s, , ) = [34]s
2 + [14+23+4]s + [12+2] 

The parameter identification methods discussed in the previous section can then be applied. The 

explicit reference to m1 has dropped out of the transfer function polynomials; it will be assumed 

here that of all the parameters, only m1 is known.  

Different VSDD locations in the structure are studied in order to investigate the best way 

of using these VSDDs to improve SHM through better identification of the structural model 

parameters. Accordingly, this example is also solved considering a VSDD that can provide a 

number of distinct stiffness levels located in the second story of the structure and in both stories 

as well, as shown in Figs. 8 and 9. This will generally give an idea of how VSDD should be 

distributed in a structure for good SHM. In all cases, the VSDD is chosen to act as an ideal 

variable stiffness/damping device, with one of several discrete stiffness/damping values. Some 

examples from simulation are used to demonstrate the proposed method. This 2DOF model 

system identification was solved for the variable stiffness VSDD and for a conventional structure 

(no VSDD). In the simulations, each installed VSDD is assumed to provide additional stiffness at 

five discrete levels: 0%, 10%, 20%, 30% and 40% of the stiffness of the story at which it is 

located. 
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Figure 8.  VSDD in 2nd story of 2DOF model 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. VSDDs in both stories of 2DOF model 

4.3.2 Two Degree-of-Freedom Pier-Deck Bridge Model 

Consider a bridge structure such as 

one shown in Fig. 10, which is a typical 

elevated highway bridge that consists of 

decks, bearings, and piers. The behavior of 

the bridge deck and piers, with a bearing 

between them, while complex, can be well 

approximated with the simple 2DOF model 

shown in Fig. 11c. This 2DOF model may 

be used to represent a passive system with 

rubber bearings if the girder is continuous 

with one pier and one bearing, or for 

several piers and bearings with identical 

properties. Also, this model can be used for 

VSDD systems if the devices are attached 

as shown in Fig. 12 and commanded to 

provide identical force levels. It is assumed 

in this problem that the pier mass m1 is 

known. 

 

Figure 10. General view during construction of 
high occupancy vehicle (HOV) lanes (ADOT, 2001) 

The theoretical polynomial transfer function matrix ),( jωH  is defined similarly to 

Eq. (16) where, here, ),,(),,(1  θθ jωAjωB  is the transfer function between the ground 

acceleration and the absolute acceleration of the pier and ),,(),,(2  θθ jωAjωB  is the transfer 

function between the ground acceleration and that of the bridge deck. The unknown parameter 

vector θ  is defined similar to Eq. (13) but k1, is the stiffness of the pier and k2 the stiffness of the 

deck. The vector of known parameters κ  denotes the additional stiffness added through the 

VSDD connected between the pier and the deck. In the simulations, the installed VSDD is 

assumed to provide additional stiffness at five discrete levels: 0%, 10%, 20%, 30% and 40% of 
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the stiffness of the deck. A second, related example will use five similar discrete levels of VSDD 

damping instead of stiffness. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11. 2DOF bridge model 

 

 

 

 

 

 

 

 

Figure 12. Placement of VSDDs in bridge 

 

4.3.3 Six Degree-of-Freedom Shear Building Model 

To demonstrate that these methods can be extended to more complex problems, a six 

degree-of-freedom shear building model is also studied.  The shear building model is found to be 

a good representation for general problems that may exist in multi-story (or multi degree of 

freedom (MDOF) structures. This 6DOF model system identification was solved for the variable 

stiffness VSDD and the conventional structure (no VSDDs). In simulation, each installed VSDD 

is assumed to provide additional stiffness at four discrete levels: 0%, 10%, 20%, and 30% of the 

stiffness in the story at which it is located. The VSDD devices included in the structure are also 

considered ideal; i.e., they can generate the desired forces with no delay and with no actuator 

dynamics. In this problem, the VSDDs are considered to be located in the first three stories only, 

as shown in Fig. 13, to make best use of VSDDs in the structure without escalating the 

expenditures too much. 

It is important to note that applying the ILSN method for estimation of parameters in case 

of higher degrees of freedom (such as the 6DOF model) was very challenging in terms of RAM 

availability and computational speed. Some details about the numerical procedure to solve these 

difficulties are provided in Appendix A. 
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Figure 13. 6DOF model with VSDDs in first three stories 

Here, masses are assumed a prior whereas the previous 2DOF model assumed knowledge 

only of the first mass. The unknown parameter vector θ  for the six degree-of-freedom model is, 

then, a set of unknown stiffness ki and damping ci coefficients as follows: 

 
T

654321654321 ][ cccccckkkkkkθ  (18) 

Finally, the solution for the parameters was done using the MATLAB
® software and using the 

function fsolve() for the solution of the non-linear equations in the unknown parameters θ . 

4.4 NUMERICAL EXAMPLES AND ANALYSIS OF RESULTS  

To demonstrate the benefits and the advantages of testing a structure with VSDDs 

configured in multiple settings, some numerical examples are considered. 

4.4.1 Two Degree-of-Freedom Shear Building Model 

First, a numerical example of the 2DOF structure is studied. For simplicity, the floor 

masses and story stiffnesses are taken to be unity in the numerical model. The story damping 

coefficients are set to 0.05, which results in 1.5% and 4.0% modal damping in the two modes, 

respectively. The single VSDD is assumed to provide additional stiffness in the story at which it 

is located with five discrete stiffness levels, corresponding to an additional 0%, 10%, 20%, 30% 

and 40% stiffness; i.e., 1=0.0, 2=0.1, , 5=0.4 . The primary comparison reported here is 

the difference between: 

• the VSDD approach, using five experimental transfer function matrices, one per VSDD 

stiffness level, and 

• the conventional structure approach with =0.0  to make for a fair comparison using the 

same amount of data, the conventional approach uses a square error based on five separate 

experimental transfer functions.  

k2,c2 

k1,c1 

x2 

x1 m1 

x4 

x3 

x6 

x5 

k3,c3 

m3 

k4,c4 

m4 

k5,c5 

m5 

k6,c6 

m6 

m2 

gx

 



 23 

The experimental transfer functions are generated in MATLAB by using the exact transfer 

functions plus the Fourier transform of a Gaussian pulse process that would be typical of band-

limited Gaussian white sensor noise vector processes. The sensor noise used in generating the 

five experimental VSDD transfer functions is the same as those used for the conventional 

structure approach. 

The number of evenly-spaced frequency points n is 51. Figure 14 shows a comparison, 

in both linear and log scales, of the exact transfer function magnitudes that represents the true 

model with those of the experimental transfer function corrupted by noise for zero VSDD 

stiffness; this noise level provides a fairly challenging problem. 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14. Exact and noisy TF magnitudes 

Once the experimental transfer functions are generated, MATLAB
® code employing the 

Symbolic Math Toolbox™ is used to determine the total square error symbolically. The result is 

then differentiated with respect to the unknown parameter vector θ , giving a number of 

equations that should equal zero. These equations, which are cubic polynomials in θ  for the 

parameterization in Eq. (13), are solved numerically using fsolve() function in the 

Optimization Toolbox™ with function tolerances and θ  solution tolerances both set to 10–5. The 

iterative approach uses a relative tolerance of 10–4 (which must be met for all elements of the 

unknown parameter vector θ ) as a termination criterion. 

Least-Squares Numerator Method Results 

First, the expected bias in the least-squares numerator method is verified by using the 

error definition in Eq. (9). The VSDD and conventional structure approaches are used to 

determine the unknown parameters. Each approach is performed 26 times, with 26 different 

seeds for generating the random noise, to see the distribution of error levels that may be expected 

with the least-squares numerator method. The initial θ  guess provided to the numerical equation 

solver is the exact value. Figure 15, which shows the error in the stiffness estimates for the 26 

trials, demonstrates that both approaches give significant error in the estimates as well as a wide 

systematic bias. This bias is expected, as the denominator magnitude is quite large for higher 

frequency points as shown in Fig. 16, causing the noise to significantly skew the parameter 

estimates. Therefore, one can conclude that, as expected, this simplified technique cannot be 

adopted for fair comparison between the VSDD and conventional structure approaches because 

the results are not accurate. 
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Figure 15. Stiffness estimate error levels with least-squares numerator method 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16. Denominator magnifies error at higher frequency with LSN method. 

 

 

Results with the Iterative Method 

The iterative approach gives significantly better results. Using the true parameter vector 

as an initial starting guess for the iterative procedure, the algorithm converges, generally in 3–5 

iterations, to estimates that are fairly accurate  much better than the least-squares numerator 

method. Figure 17 shows the relative error in the estimates of the stories stiffness for the 

conventional structure and VSDD approaches. Here, 100 separate estimates were computed 

(each with a different noise seed) to examine the variation due to sensor noise. The graph also 

shows approximate one-, two- and three-sigma (standard distribution) curves representing for the 
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two approaches. The curves were generated, assuming a Gaussian distribution, using the means 

and covariance matrix of the 100 estimates. The variation in estimates of first- and second-story 

stiffness using the VSDD approach are about half and two-thirds, respectively, of those using the 

conventional structure (without VSDDs).  
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Figure 17. Stiffness estimate error levels for iterative method 
with exact start for 2DOF model with VSDD in 1st story only 
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Figure 18. Damping estimate error levels for the iterative method 
with exact start for 2DOF model with VSDD in 1st story only 
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Damping estimates are, as expected, much less accurate for both approaches. Figure 18 

shows the error variation in damping coefficient estimates using the ILSN method, and 

demonstrates that the VSDD approach has again generated a smaller variation as sensor noise 

changes. The relative error in this case is somewhat larger than that of the stiffness estimates, 

equals 22% using VSDDs and 27% for the conventional structure case in estimating the damping 

coefficient in the first floor c1, and 36% and 40% for the estimation of the damping coefficient in 

the second floor c2. This larger relative damping estimate error, for both VSDD and conventional 

structure approaches, compared to stiffness, is typical of most identification methods. Yet, it is 

clear that the VSDD approach, while not making vast improvements, shows some decrease in 

error compared to the conventional approach. 

An initial guess that is biased, offset from the correct parameter vector by some amount, 

would be expected to give poorer estimates. This is indeed the case. Using an initial parameter 

vector that is 20% higher (in all components) than the exact values, 20 separate estimates were 

computed. Figure 19 shows that both approaches, as anticipated, are much less accurate in 

estimating the stories stiffness than with the exact initial guess. Here, the VSDD approach gives 

estimate means that are less biased than the conventional structure approach, though with 

slightly larger variation in the estimate of k1. Again, this indicates that using VSDDs improved 

the stiffness estimates. 
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Figure 19. Stiffness estimate error levels for the iterative method 
with offset start for 2DOF model with VSDD in 1st story only 

The computational effort to solve these problems symbolically was much higher than 

anticipated. To compute one estimate with the correct initial starting guess took approximately 

15 minutes on a 600 MHz Pentium III computer. This is based on using the symbolic Math 

toolbox of MATLAB which is powered by MAPLE
®. With an offset starting guess, more iterations 

were required, both in the iterative approach outlined above as well as within the numerical 

solver fsolve(), requiring slightly longer to converge. The estimate means and coefficients of 

variation are shown for the two approaches in Table 1. The average number of iterations required 

for the MATLAB solver to converge are always less in case of VSDD approach than the 

conventional structure approach as shown in Table1. 

 VSDD 

Conventional 

Exact * 

R
e
la

ti
v

e
 %

 e
rr

o
r 

in
 e

s
ti

m
a

te
 o

f 
k

2
 

 

Relative % error in estimate of k1 

 



 27 

Table 1. Estimate Means and Coefficients-of-Variation for 2DOF Shear Building Model 

Variables exact 

mean coeff. of variation[%] 

exact init. guess offset init. guess exact init. guess offset init. guess 

Conv. 

Struct. 
VSDD 

Conv. 

Struct. 
VSDD 

Conv. 

Struct. 
VSDD 

Conv. 

Struct. 
VSDD 

1 

2 

3 

4 

5 

1 

1 

0.05 

0.05 

1 

0.9999 

0.9972 

0.0519 

0.0450 

0.9982 

0.9999 

0.9970 

0.0531 

0.0445 

0.9975 

1.0711 

0.9337 

0.0523 

0.0477 

1.0672 

1.0241 

0.9845 

0.0521 

0.0460 

1.0183 

0.0770 

0.5310 

7.4810 

11.224 

0.3780 

0.0390 

0.3660 

5.0920 

9.5930 

0.2950 

1.1990 

1.2620 

6.2690 

9.2310 

1.1220 

2.4560 

1.8750 

7.1560 

13.491 

1.8370 

k1 

k2 

c1 

c2 

m2 

1 

1 

0.05 

0.05 

1 

0.9999 

0.9955 

0.0519 

0.0449 

0.9982 

0.9999 

0.9945 

0.0531 

0.0444 

0.9975 

1.0711 

0.9964 

0.0523 

0.0509 

1.0672 

1.0241 

1.0023 

0.0521 

0.0469 

1.0183 

0.0770 

0.8930 

7.4810 

11.163 

0.3780 

0.0390 

0.6570 

5.0920 

9.6220 

0.2950 

1.1990 

1.0410 

6.2960 

9.1460 

1.1220 

2.4560 

0.9100 

7.1560 

14.165 

1.8370 

average 

no. of 

iterations 

0 4.9800 4.0600 5.0500 4.8500 

 

VSDD in Second or Both Stories 

To understand the effect of VSDD location(s) on the estimation, this 2DOF numerical 

example is modified to consider a VSDD in the second story. Trying to know the best location 

for VSDD within the structure, this numerical example is extended to consider the existence of 

VSDD in the second story, and in both stories. Again, comparison is made in each case to the 

conventional approach with no VSDDs located in the structure. The parametric frequency 

domain identification is applied and the results with a VSDD in the second story or one in each 

of the two stories are compared with those in conventional structure case.  

From Fig. 20, it can be observed that the variation of the stiffness in the second story was 

clearly reduced, giving better identification of the second-story stiffness compared to a VSDD in 

the first story only. However, the variation in estimation of the first-story stiffness k1 is larger 

with the second-story VSDD than with the conventional approach. Figure 21 shows that the 

damping estimation is still poor, as seen in the previous section. Yet, the VSDD still improves 

over the conventional structure approach. 

Finally, two VSDDs are considered, one located in each story. Several simultaneous 

values of both VSDDs are considered. Each VSDD is controlled to exert an extra stiffness of 0%, 

20%, 30%, and 40% each in its location. Five different profiles of simultaneous values of the 

exerted extra stiffness by both VSDDs are considered in the identification problem such that the 

values of additional stiffness are (0%,0%), (0%,40%), (20%,30%), (30%,20%) and (40%,0%) of 

the stiffness of each story, respectively. The results of the stiffness parameter identification 

problem are compared, similarly to the previous cases, to data from conventional structure 

simulations (so the amount of data is the same in both cases). 
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Figure 20. Stiffness error levels for the iterative method with 
exact start for 2DOF model with VSDD in 2nd story only 
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Figure 21. Damping error levels for the iterative method with 
exact start for 2DOF model with VSDD in 2nd story only 
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Figure 22. Stiffness error levels for the iterative method with exact 
start for 2DOF model with VSDD in both 1st and 2nd stories 

The stiffness estimate results in Fig. 22 show that though the variation of the stiffness 

identification of the second story is clearly decreased and improved, the variation of the stiffness 

identification of the first story is still more than the conventional approach case. However, some 

improvement in the variation of the stiffness of the first story compared to the case of a VSDD in 

the second story can be noticed. As a result of that, it can be deduced that VSDDs may be most 

effective in identifying the stiffness of the stories or levels where they are located. However, 

multiple VSDD simultaneously may provide decreasing returns in a 2DOF structure, which may 

not be a fact for more complex structures. Comparing Figs. 18, 21 and 23, it is obvious that using 

a VSDD in each story simultaneously results in better identification of the damping coefficients 

of the first and second stories. The variation of the damping coefficients is reduced significantly 

and the means are more accurate. 
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Figure 23. Damping error levels for the iterative method with exact 
start for 2DOF model with VSDD in both 1st and 2nd stories 
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Table 2. Range of 3 Stiffness and Damping Estimate Relative Errors for 2DOF Shear Model 

Initial 

guess 
Case k1 k2 c1 c2 

Exact 

Conventional structure [0.24%, 0.23%] [3.1%, 2.2%] [20%, 27%] [40%, 20%] 

VSDD in 1st story [0.13%, 0.11%] [2.4%, 1.4%] [10%, 23%] [22%, 5.0%] 

VSDD in 2nd story [0.70%, 0.70%] [2.0%, 1.1%] [12%, 16%] [20%, 20%] 

VSDDs in both stories [0.50%, 0.40%] [2.3%, 1.5%] [5.0%, 10%] [25%, 10%] 

Biased 
Conventional structure [3.50%, 12.00%] [3.5%, 2.8%] [16%, 25%] [26%, 30%] 

VSDD in 1st story [5.00%, 10.0%] [2.5%, 3.0%] [18%, 27%] [46% , 34%] 

 

Table 2 show the ranges for three times standard deviation of stiffness and damping 

estimate error. This is done for the different cases of the 2DOF shear building model. Note that 

all VSDD configurations in the 2DOF structure model, the number of estimations was 100 times 

with exact starting guesses and 26 times for with biased starting guesses. 

4.4.2 Two Degree-of-Freedom Pier-Deck Bridge Model 

The 2DOF bridge model shown in Fig. 11, provides an example that has full-scale 

structural parameters. A VSDD is attached between the deck and the pier as shown in Fig. 12 is 

assumed to provide an additional 0%, 10%, 20%, 30% and 40% stiffness; i.e., 1 = 0.0, 2=0.1, 

..., 5=0.4. Numerical quantities for this model, drawn from Erkus et al. (2002), are considered 

as an illustrative example k1 = 15.791 MN/m, k2 = 7.685MN/m, m1 = 100 Mg (tons), 

m2 = 500 Mg, c1 = 125.6 kN·s/m, and c2 = 196 kN·s/m. The experimental transfer functions are 

simulated in MATLAB by using the exact transfer functions plus the Fourier transform of a 

Gaussian pulse process typical of band-limited Gaussian white sensor noise vector processes. 

The noise induced in the experimental transfer function of the 2DOF bridge model is shown in 

Fig. 24, in both linear and log scales.  

The iterative least-squares parametric frequency domain identification is performed on 

this 2DOF bridge model, both with a VSDD in the isolation layer between the deck and pier and 

without. The results show error reductions in both stiffness and damping estimates (though with 

the latter more modest than the former).  The relative error in the stiffness estimates, shown in 

Fig. 25, have some small bias  about 0.5% in the estimate of the pier stiffness and about 2% in 

that of the isolator  that exists both with and without the VSDD (though the bias is to higher 

pier stiffness estimates with the VSDD, and lower without). While the bias is similar, the VSDD 

approach shows notable reductions in stiffness estimate variation, demonstrating that the VSDDs 

improve the identification. Similar observations may be made regarding damping estimates, as 

shown in Fig. 26. The VSDD approach slightly decreases the bias in the pier damping coefficient 

estimate, and modestly decreases the variation in both pier and isolator damping estimates. 
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Figure 24. Exact and noisy TF magnitudes for 2DOF bridge model 
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Figure 25. Stiffness estimate error levels for the iterative 
method with exact start in 2DOF bridge model 
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Figure 26. Damping estimates error levels for the iterative 
method with accurate start in 2DOF bridge model 
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4.4.3 Six Degree-of-Freedom Shear Building Model 

The six degree-of-freedom structure has story and VSDD characteristics similar to the 

2DOF building structure discussed previously. The story stiffnesses and floor masses are chosen, 

for simplicity, to be unity. The damping coefficient in each story is 0.05. There are three VSDDs 

in this structure, one in each of the first three stories, that can each provide five discrete stiffness 

levels that are 0, 10, 20, 30 and 40 percent of the story stiffness. The transfer functions are 

generated using the exact transfer function plus noise (shown in Fig. 27 for one noise 

realization), and the estimation is performed 20 times (each with a different random seed).  In 

each estimation, the VSDD approach uses four sets of VSDD stiffness combinations: 

(0%,0%,0%), (10%,20%,30%), (20%,30%,10%), and (30%,10%,20%) in the first, second and 

third floors, respectively. As before, for fair comparison, the conventional structure approach 

uses four realizations of the transfer functions so that the amount of data is the same as the 

VSDD approach. 
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Figure 27. Exact and noisy TF magnitudes for 6DOF shear building model 

 

Figure 28 shows the improvement in the estimates of the stiffness and damping 

coefficients when using VSDDs in the structural model. It is quite evident that the variations are 

dramatically reduced  up to 3 times for stiffness estimates and up to 4 times in the damping 

estimates. These results are similar to the improvements observed in lower-order 2DOF shear 

building model and the 2DOF bridge model. However, it can also be deduced that the expected 

improvements are more contrasted for higher degree of freedom models (i.e., more complex 

models). The resulting estimates of the mean and the coefficient of variations for the stiffness 

and damping coefficients are shown in Table 3. 
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Figure 28. Stiffness and damping estimates error levels for the 
iterative method with exact starting guess in 6DOF model 
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Table 3. Estimate Means and Coefficients-of-Variation for 6DOF Shear Building Model 

Variables exact 

coeff. of variation[%] 

exact init. guess exact init. guess 

Conv. 

Struct. 
VSDD 

Conv. 

Struct. 
VSDD 

k1 

k2 

k3 

k4 

k5 

k6 

1.0 

1.0 

1.0 

1.0 

1.0 

1.0 

 

1.0003 

0.9996 

1.0001 

1.0002 

0.9999 

0.9995 

 

 

1.0001 

0.9998 

0.9999 

1.0003 

0.9999 

0.9998 

 

 

0.18 

0.097 

0.163 

0.219 

0.172 

0.135 

 

0.066 

0.034 

0.068 

0.074 

0.062 

0.042 

 

c1 

c2 

c3 

c4 

c5 

c6 

 

0.05 

0.05 

0.05 

0.05 

0.05 

0.05 

0.051095 

0.049145 

0.049555 

0.050210 

0.049230 

0.049560 

0.05092 

0.049415 

0.049515 

0.050065 

0.049365 

0.049965 

4.824 

3.497 

4.667 

7.281 

3.444 

4.553 

1.364 

0.816 

1.032 

1.248 

1.188 

0.877 

 

4.5 Using VSDDs with Variable Damping Only 

Whereas the previous sections investigated the effects of VSDDs operating in a variable 

stiffness mode, it is possible that inducing added damping will have an effect on the SHM as 

well. Using variable damping would be of great interest since “smart” semiactive damping 

devices have received extensive study for vibration mitigation purposes (Soong and Spencer, 

2002) and capitalizing on the synergies between control and SHM would be a cost-effective 

solution. In this example, the 2DOF bridge model is studied with a variable damping device in 

the isolation layer between the pier and deck. The damping levels of the device are 0%, 10%, 

20%, 30%, and 40% of the isolator damping coefficient. As in the other numerical examples, the 

device is considered ideal (no internal device dynamics), the transfer functions are measured 

through standard means, and the least-squares parametric frequency-domain identification 

technique is applied. 

The results, shown in Figs. 29 and 30, indicate that the VSDD approach, with the 

damping levels described above, did not differ significantly from the conventional structure 

approach. The relative error in stiffness estimates in Fig. 29 have similar bias in both approaches 

and a slightly larger variation with the VSDD damping device.  Similar observations may be 

made about the damping estimates (Fig. 30). 

One reason that the variable damping here did not provide any notable improvement is 

the very small force levels generated by the damping device.  The damping forces in the isolation 

layer of this bridge model are about one order of magnitude smaller than the stiffness forces.  As 

a result, changing the damping by this small amount has relatively little effect. Using larger force 

levels in the variable damper may overcome this difficulty and should be studied in the future. 
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Figure 29. Stiffness estimates error levels for the iterative method with exact starting 
guess in bridge model with multiple variations of damping coefficients 
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Figure 30. Damping estimates error levels for the iterative method with exact starting 
guess in bridge model with multiple variations of damping coefficients 
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5.0 CONCLUSIONS AND RECOMMENDATIONS 

This report documents the initial study of the effectiveness of using variable stiffness and 

damping devices to improve estimates of structural parameters for structural health monitoring 

and damage detection. VSDDs are controllable passive devices that have been shown to have 

significant potential for mitigating structural response to natural hazards. This study 

demonstrates that VSDDs also have strong promise for use in SHM as well. Since VSDDs can 

be commanded to exert various force time histories, the response of a structure may be altered 

through the parametric changes effected by the VSDDs. The multiple “snapshots” of structural 

characteristics provided by the VSDD approach can provide additional information to make 

structural parameter identification more accurate and efficient. 

This study investigated VSDD/SHM by identifying structural parameters — mass, 

stiffness and damping coefficients — based on measured absolute acceleration transfer function 

data, using a parametric frequency-domain least-squares identification method. For each 

numerical example and configuration, the structural parameters were identified, first with one or 

more VSDDs in the structure, and then with no VSDDs. In all cases, simulated sensor noise is 

added to the exact transfer function to replicate the noisy transfer functions that are typically 

obtained through standard experimental techniques. In each VSDD configuration, data is 

collected while the VSDDs are commanded to act in one of several discrete stiffness or damping 

modes, with different noise corrupting each subsequent data set. To make for a fair comparison, 

the conventional structure approach is provided with the same amount of data. The variation in 

identified structural parameters due to the effects of random noise are studied by performing 

these identifications a number of times, each with a different random seed to generate the noise, 

giving a measure of both the mean and the variance of the structural parameter estimates. While 

the VSDD approach is applicable to a wide variety of structural identification methodologies, it 

is herein studied in the context of a least-squares identification using the frequency-domain 

transfer function representation of the input/output dynamics of a structure. It is shown that one 

commonly-used simplification of this identification method gives biased results, and an alternate 

iterative approach is shown to give superior results. This iterative least-squares identification, 

with and without VSDDs, are applied to several numerical examples: a bridge pier/deck model 

and two shear building models. The VSDD is commanded to act as a discrete stiffness element 

or a discrete damping element, with stiffness or damping coefficient based on a fraction of the 

corresponding coefficient for the location where the VSDD is installed in the structure. When a 

VSDD acts as a discrete multi-level damping element with coefficient a fraction of that of the 

structure, little improvement is gained over the conventional structure approach, probably due to 

the very low force levels due to the VSDD damping. In contrast, the discrete stiffness behavior is 

shown to improve estimates of the stiffness and damping coefficients in the structure, 

particularly for the more complex numerical example with several VSDDs. 

While the results herein definitely show that there is the potential for VSDDs to make a 

real contribution to structural health monitoring, a number of open questions and future 

directions have arisen in the course of this study. First, since the response to ambient excitation 

sources is, generally, quite low, the force levels of the VSDDs in this study were small — in fact, 

orders of magnitude smaller than the forces the structure is designed to withstand as well as, 

perhaps, two orders of magnitude smaller than the peak forces capable with current VSDD 

technology. Consequently, the VSDDs, especially in the discrete damping mode, were less 
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effective than would likely occur if they were commanded to use larger (but still moderate 

compared to the structural capacity) force levels. Future research should test if larger orce levels 

will give further improvement in identifying structural parameters. Second, VSDD behavior is 

commanded through a control system based on responses in the structure; for example, to act as 

a stiffness element with a particular stiffness level, the VSDD exerts a force proportional to the 

relative displacement across it. Herein, these devices were considered ideal and internal device 

dynamics were neglected. Future studies should examine the effects of VSDD device dynamics 

on the SHM improvements. Third, while it is convenient to consider (and explain) VSDDs in 

terms of the added stiffness and damping they provide, these concepts are inherently linear, time-

invariant; and reliant only on local information rather, VSDDs can be commanded to exert a 

range of forces that change over time and cannot be characterized as either stiffness or damping 

or combination of the two. The challenge lies in developing a methodology for determining the 

best VSDD force time histories to improve the structural parameter estimation in an even more 

robust and efficient manner than studied herein. 
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Appendix A: Computational Procedure for 6DOF Shear Model 

While using the symbolic math capabilities of MATLAB to formulate the iterative least-

squares frequency-domain identification is convenient, it is not very efficient for larger 

problems, requiring the development of a semi-numerical solution procedure. The core of this 

alternate solution procedure lies in recognizing that the residual error lê  in Eq. (11) can be 

separated into a set of numerical coefficients and a numeric representation of the symbolic 

unknowns. The r th element of the 1m  error lê  in Eq. (11) can be modified as 
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where the 
rs

ip are non-negative integer exponents that can be arranged in 1n  vectors rs
p  which 

can be collected into set },,{ 1 r
nrr

rP vpp  . The symbolic )(θvr  is a function only of the 

unknown parameters and is different for each element of the transfer function error. The 

coefficient vector ),( kirl j κc   depends on the frequencies and the known parameters, and is 

different in each iteration and for each element of the transfer function matrix. Since the )(θvr  

can be defined by the numeric exponents of the elements of the unknown θ , they can be stored 

and manipulated numerically just through the tensor 
rs

ip . 

Substituting Eq. (A1) into the square error Eq. (12), results in 
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where †)(  denotes complex conjugation. The order of summation and multiplication can be 

rearranged due to )(θvr  being independent of i  and k , giving 
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The quantity in brackets is purely numerical and can be computed quite easily; let it be defined 
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which incorporates all of the information for the data frequency points ij  and the different sets 

of known parameters kκ . 

The vectors )(θvr  are not all the same.  It is convenient to define a single similar vector 

)(θv  that contains all of the symbolic products of powers of all unknown θ  contained in the 

individual )(θvr . 
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where the s

ip  are non-negative integer exponents that can be arranged in vn  1n  vectors s
p  

that can be collected as set },,{ 1 vpp
n

P  , which is the union of the individual sets for each 

element of the transfer function, 
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The individual symbolic vectors )(θvr  can be related to the global symbolic vector by 

 )()( θvTθv rr  , mr ,,1  (A8) 

where rT  is a transformation matrix containing ones and zeros 
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where ),( yxI  is an indicator function that has value 1 when every element of x  matches the 

corresponding element of y . 

Substituting Eqs. (A5) and (A7) into the square error Eq. (A4) gives 
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which can be simplified since )(θv  is independent of transfer function index r  
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where lC is an vv nn   symmetric numeric matrix with elements l

rsc . Computing these elements 

can be done quite efficiently; the slowest part is the process of forming the union of the exponent 

sets and building the resulting transformation matrices rT . 

Determining the least-square estimates of the unknowns then requires the gradient of 
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and the elements of its corresponding Jacobian 
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The j th element of the gradient can be simplified to a set of products of powers of unknowns 

and the corresponding coefficients 
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The elements of the Jacobian can be formed in a similar manner, resulting in a set of coefficients 

and exponents. 
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Equation (A14), then, is a nonlinear equation that is the linear combination of products of 

powers of the unknowns and can be solved through standard numerical root solving algorithms 

— this study used the function fsolve() in MATLAB’s Optimization Toolbox. The coefficients 
l

jrsc ,
~  and the exponents rs

jip ,
~ can be computed in a purely numeric procedure from the assumed 

structural model, and the root solver is numerical. Thus, this alternate numerical solution avoids 

symbolic computation entirely.  The result is that the 2DOF identification problems can be 

solved in a few seconds on a 2.4GHz Pentium 4, whereas a mostly symbolic computation takes 

on the order of several minutes on the same computer. 
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